
PHYSICAL REVIEW E NOVEMBER 1999VOLUME 60, NUMBER 5
ARTICLES

Glassy dynamics and aging in an exactly solvable spin model

M. E. J. Newman and Cristopher Moore
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501

~Received 5 April 1999!

We introduce a simple two-dimensional spin model with short-range interactions which shows glassy be-
havior despite a Hamiltonian which is completely homogeneous and possesses no randomness. We solve
exactly for both the static partition function of the model and the distribution of energy barriers, giving us the
equilibration time scales at low temperature. Simulations of instantaneous quenches and of annealing of the
model are in good agreement with the analytic calculations. We also measure the two-time spin correlation as
a function of waiting time, and show that the model has aging behavior consistent with the distribution of
barrier heights. The model appears to have no sharp glass transition. Instead, it falls out of equilibrium at a
temperature which decreases logarithmically as a function of the cooling time.@S1063-651X~99!04311-1#

PACS number~s!: 05.50.1q, 64.60.Cn, 64.70.Pf, 75.10.Nr
nt
a
s

el
en
te
le

ye
ve
e
-
s
e
or
n

in
n
n

th
es
te
ev
e

p
o

ul
m

th

na
sl

e
b

ns
ons
s,
ctly

is-
del

udied
ics
in-

e
or
in
-
ing

dis-
ex-
ee-
ing
lu-

s
ns

bor
e
is

he
I. INTRODUCTION

A great deal of effort has been devoted in the last twe
years or so to understanding the behavior of spin glasses
other glassy models@1–3#. In spin glasses, one introduce
randomness into the Hamiltonian of some otherwise w
behaved system, creating a hierarchical distribution of
ergy barriers over state space which prevents the sys
from reaching thermal equilibrium on reasonable time sca
below a certain temperature. The slow dynamics displa
by these systems has made their computer simulation
difficult despite the recent appearance of a number of n
and promising algorithms@4,5#, and the presence of random
ness in the Hamiltonian has, except in a few special ca
@6–8#, prevented their exact solution. As a result, our und
standing of their behavior is, even after many years of eff
still very far from complete. It is, for example, still an ope
question whether, in the limit of infinitely slow cooling, sp
glasses with short-range interactions display a sharp tra
tion from ergodicity to glassy behavior, or whether the tra
sition is a gradual one@2#.

However, it is not necessary to have randomness in
Hamiltonian in order for a system to be glassy. Glassin
has its origin in the dynamics by which the system is upda
rather than the energy landscape. In fact, no landscape
exists until we specify the dynamics, since the set of elem
tary moves by which the system moves from one state
another defines which states are neighbors. Given an ap
priate choice of dynamics, any system can be ergodic
short time-scales, regardless of the energies of partic
states. Conversely, it should be possible to find syste
which display glassy behavior without randomness in
Hamiltonian.

One such system is the molecular or configuratio
glass—window glass, for example—but this is a notoriou
difficult system to study mathematically@1#. Recently there-
fore, a number of authors have investigated spin mod
which are non-random but show glassy behavior either
PRE 601063-651X/99/60~5!/5068~5!/$15.00
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cause of competition between different types of interactio
@9# or because of the presence of higher-order interacti
@10,11#. For some models with infinite-range interaction
the statics, though not the dynamics, can be solved exa
@12–14#.

In this paper we introduce ap-spin model in two dimen-
sions which, under a dynamics which flips single spins, d
plays the classic features of a glassy system. This mo
possesses the considerable advantage over previously st
models that both its statics and its low-temperature dynam
are exactly solvable, even though it has only short-range
teractions.

The structure of the paper is as follows. In Sec. II w
define our model. In Sec. III we give an analytic solution f
the partition function and internal energy of the model
equilibrium. In Sec. IV we solve for the distribution of en
ergy barriers between the ground state and the lowest-ly
excitations of the model and hence argue that it should
play glassy behavior. We compare our predictions with
tensive Monte Carlo simulations and find excellent agr
ment between the two. In Sec. V we study the ag
properties of our model, and in Sec. VI we give our conc
sions.

II. THE MODEL

Our model is ap-spin model composed of Ising spin
s1561 on a triangular lattice with short-range interactio
and a single-spin-flip dynamics. The Hamiltonian is

H5
1

2
J (

i , j ,k in ,
s is jsk . ~1!

The sum here runs over all sets of three nearest-neigh
spins i , j ,k which lie at the three vertices of one of th
downward-pointing triangles on the lattice. Except for th
restriction to downward-pointing triangles, our model is t
same as the Baxter-Wu model@15#, although its behavior is
5068 © 1999 The American Physical Society
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entirely different. It is also similar to a model used b
Barkemaet al. @16# to study the formation of adatom island
on ~111! surfaces of metals.

For most of our presentation we will find it more conv
nient to rewrite this Hamiltonian in the form

H5J (
i , j ,k in ,

~si1sj1sk!mod 2, ~2!

which is identical to Eq.~1! except for an additive constant
we map the Ising spinss i onto the variablessi5

1
2 (s i11),

which take the values 0~down! or 1 ~up!.
One could also construct a disordered version of

model in which the three-spin interactions were chosen r
domly to have strengths6J. However, this disordered ver
sion can be mapped onto the homogeneous one above
simple gauge transformation, and so the two have ident
behavior.~This transformation is particularly obvious whe
viewed in terms of the defect variables introduced below!

The dynamics of the model consists of moves which
single spins. We have chosen to investigate the behavio
the model under the standard Metropolis dynamics@17# in
which moves with energy costDE take place with rate 1 if
DE<0, and with rate e2bDE if DE.0. However, except for
differences in the short-time correlations and a possible o
all rescaling of time, we would expect the fundamental pro
erties of the model to be the same for any other single-s
flip dynamics which respects both ergodicity and detai
balance.

III. EQUILIBRIUM SOLUTION OF THE MODEL

In the following sections we discuss the glassy behav
of our model. First, however, we give an exact solution of
equilibrium properties. An alternative representation of
state of the model is as a triangular lattice of defects:
downward-pointing triangles of the Hamiltonian themselv
form a triangular lattice, and for each site on this latti
which corresponds to a trio of spins of which either one
three are up, there is an energy contribution ofJ to the
Hamiltonian. Thus we can represent each state of the la
by a set of defect variables

di5~si1sj1sk!mod 2, ~3!

which take the value 1 when a defect is present and 0 ot
wise. In terms of these defect variables, the Hamilton
takes the form of a set of non-interacting Ising spins in
external fieldJ:

H5J(
i

di . ~4!

This simple form for the Hamiltonian allows us to solve f
the model’s equilibrium behavior exactly. However, there
a price to be paid for this simplicity in terms of an increas
complexity in the dynamics. In the defect representation
the model, a single spin-flip corresponds to flipping the sta
of three defects at the vertices of anupward-pointing tri-
angle. Thus our model displays clearly the duality betwe
dynamics and interactions which is present in all systems;
can think of it either as a system of interacting spins w
e
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single-spin-flip dynamics, or as noninteracting spins with
constrained dynamics in which we flip three spins at once
the remainder of the paper, we will for the most part ado
the latter description.

The first step in solving for the equilibrium partition func
tion of the model is to find the set of allowed configuratio
of the defect variablesdi , so that we can perform the sum
over them. Clearly the number of sites on the defect lattic
the same as that on the spin lattice and hence the maxim
possible number of defect configurations is the same as
number of spin configurations of our original spin variable
We now show that, for certain boundary conditions, there
a one-to-one correspondence between spin configurat
and defect configurations.

Consider three spin configurations$s(0)%, $s(1)%, and
$s(2)%, related as follows:

si
(2)5~si

(1)1si
(0)!mod 2. ~5!

The corresponding defect configurations are similarly
lated:

di
(2)5~di

(1)1di
(0)!mod 2. ~6!

If spin configurations 1 and 2 are to have the same de
configurationdi

(1)5di
(2) for all i, it follows that the defect

variables corresponding to configuration 0 must all be ze
i.e., that configuration 0 must be a ground state of the s
tem. If we can show that there is only one such grou
state—the trivial one in which all spins are zero—then
follows that $s(1)% and $s(2)% are identical and the mappin
of spin states to defect states is one-to-one. We can ind
show this in the case of a lattice which has lengthL52k for
integerk along one dimension and periodic boundary con
tions. The argument runs as follows.

Suppose we have a lattice in the form of a rhombic st
of width L52k. If the configuration is to be a ground stat
then there can be no defects at any site on the lattice. T
allows us to calculate the values of the spins in one r
given those in the preceding row since, by Eq.~3!, each one
must be the sum mod 2 of the two above it. Ifsi j is the j th
spin of thei th row, then

si 11,j5~si j 1si , j 11!mod 2, ~7!

wheresi 11,j is the site belowsi j andsi , j 11. The spins in the
next row after this are then

si 12,j5~si j 12si , j 111si , j 12!mod 2

5~si j 1si , j 12!mod 2. ~8!

By iterating this argument it can now be shown that a sim
result applies for each row which is a power of 2 away fro
the initial one. ForL a power of 2, we then have

si 1L, j5~si j 1si , j 1L!mod 25~2si j !mod 250, ~9!

sincesi , j 1L5si j because of the boundary conditions. Giv
that both i and j are arbitrary, it immediately follows tha
every spin on the lattice is zero.

Thus we have demonstrated that, for lattices of lengt
power of two along at least one dimension, there is a uni
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ground state in which all spins have value zero, which in t
implies a one-to-one mapping of defect states to spin sta
Given the Hamiltonian~4!, the partition function of the
model is then simply

Z5 (
n50

N S N

n D e2bJn5@11e2bJ#N. ~10!

The equilibrium internal energy per site is then

Eeq52
1

Z

]Z

]b
5

J

11ebJ
. ~11!

For lattice sizes which are not a power of 2, the proof abo
no longer applies and more than one ground state may e
@18#. In that case, not all defect configurations can occ
However, the ones that do exist all correspond to the sa
multiplicity of spin configurations, one for each ground sta
Since the states of the spins in a particular ground state
determined by the spins on any one row of the lattice,
number of ground states can increase at most asNground

;eL.eAN with lattice size. In addition, all of the defec
states can be chosen independently except for those on
row, which may be restricted to some extent by the requ
ment that the spin configuration to be consistent with
periodic boundary conditions. This means that the partit
function can be written as a sum

Z5Nground(
n50

N2L S N2L

n D e2bJ(n1dn), ~12!

where dn is the number of additional defects in that ro
determined by ourN2L choices in the other rows. Sinc
dn<L.AN, logarithmic derivatives ofZ, and therefore bulk
properties of the system, converge to those of Eq.~10! for
largeN.

In Fig. 1 we show our solution for the internal energy
a function of temperature~solid line!, along with Monte
Carlo results from the simulation of the model~dashed
lines!. The simulations were performed on a 1283128 rhom-
bic system withJ51 using a Bortz-Kalos-Lebowitz continu
ous time algorithm@19#. Each curve represents the intern
energy as a function of temperature during an annealing
periment using an exponential cooling scheduleT5T0e2gt

with T051 and cooling rates~top to bottom! of g
51022,1023,1024,1025, and 1026 in units of inverse
Monte Carlo steps per spin. As the figure shows, the mod
behavior is in good agreement with the equilibrium soluti
at high temperatures, but falls out of equilibrium at low
and lower temperatures as the cooling rate is decreased
manner characteristic of glassy systems.

In the inset, we show the results of numerical experime
in which the same system is quenched fromT5` to a fixed

FIG. 1. A triangle of side 2k can be flipped by flipping three
triangles of side 2k21. The solid circles represent the defects a
the lines indicate the triangles to be flipped at each step.
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finite temperature. Each point represents the final aver
internal energy of the system after 109 Metropolis Monte
Carlo steps per site~i.e., more than 1013 steps total!. As we
can see, the exact solution is again in good agreement
the simulations for high temperatures, but fails badly asT
→0.

IV. THE ORIGIN OF GLASSINESS IN THE MODEL

We can gain some insight into the model’s loss of ergo
icity if we recall that the flipping of a single spin correspon
to flipping the states of three defects in an upward-point
triangle. In the limit of low temperature only those mov
which flip the defects in triangles containing either two
three defects are energetically possible. Triangles with
defect only will be exponentially unlikely to change, an
become local minima atT50. Hence there will be a finite
energy, and entropy, atT50 @20#.

In order to demonstrate that our model is truly glassy
the conventional sense, however, we need to treat the fi
temperature case and investigate the distribution of ene
barriers. As we have demonstrated above, the model has
one ground state, in which there are no defects and all s
are zero. We now show that the elementary excitations of
model—those states lying closest to the ground state—
trios of defects at the vertices of an upward-pointing equi
eral triangle of lengthl 52k on a side with integerk.

Equation~7! tells us that the spins below an isolated d
fect form a Pascal’s triangle mod 2. If we take a finite regi
of the lattice in the form of an upward-pointing equilater
triangle, each defect in it produces such a Pascal trian
Then if the spins along the top sides of the triangle are ze
the bottom row is the sum mod 2 of the corresponding ro
of each of the triangles. We call this row of spins theshadow
of the region’s defects. The sum of the Pascal triangles o
upward-pointing triangle of three adjacent defects is ze
thus a move that flips all three conserves the shadow,
one defect configuration can be reached from another b
series of local moves if and only if they have the sam
shadow. In particular, only configurations with a ze
shadow can be local excitations of the ground state. It is t
straightforward to show that no configurations with one
two defects can have a zero shadow, and that the only s
configurations with three defects are those arranged in
upward-pointing triangle of side 2k.

Next, we ask what the energy barrier is for flipping
triangular excitation of a given size. The minimum-ener
path for flipping a triangle of side 2k involves flipping three
triangles of side 2k21 in series, as shown in Fig. 1. Since th
intermediate state on this path has four defects rather
three, the total energy barrier for the process isJ higher than
that for flipping a triangle of half the size. This in turn isJ
higher than the barrier for flipping triangles of halfthat size,
and so on, down to triangles of side 1 which have barr
zero. Thus the total height of the barrier which must
crossed in order to create or remove a triangular excitatio
side l 52k is J log2l 5kJ, increasing logarithmically with
size @21#.

In a system of linear dimensionL,2k11, the largest pos-
sible excitation is a triangle of side 2k, and kJ.J log2L is
the largest energy barrier the system must cross to ach
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ergodicity. The conventional view is that a glassy syst
should have energy barriers which scale as a power oL.
Since lnL is a limiting case of the power law when th
exponent tends to zero, our model can be considered ma
ally glassy. At low temperatures, assuming an Arrhenius
t}ebDE, the correlation time goes as

t;ebJlog2L5LbJ/ ln2 ~13!

i.e., as a power-law in the system size, with the expon
increasing linearly withb. At high temperature, the fact tha
there are several pathways for annealing away a triang
excitation reduces the free energy barrier somewhat, bu
believe that there is no sharp glass transition.

We have confirmed these results in simulations of
model. In Fig. 2 we show the time taken to equilibrate t
system starting from a state consisting of a single triang
excitation of a given size for three different temperatu
with J51. The expected power-law is obeyed closely. T
lines should cross at the origin, since the time to get rid of
excitation of sizel 51 is unity, and to a reasonable approx
mation they do this. The exponent of the power law is sho
as a function ofb for five different temperatures in the inse
The expected value ofbJ/ ln2 is shown as the dotted line an
agrees well with our measurements.

We are now also in a position to explain the form tak
by the Monte Carlo results in Fig. 3. Writing the time sca
for equilibration on length-scales up tol 52k as

tk5ebJk, ~14!

we can write the energy of the system after timet as

E~ t !5Eeq1(
k

Ake
2t/tk, ~15!

where the quantitiesAk are temperature-independent co
stants. The dashed line in the inset of Figure 3 is of this fo
with Eeq taken from Eq.~11!, t5109 as in the simulations

FIG. 2. The time it takes the system to eliminate a single tri
gular excitation of size l 52,4,8,16 for temperaturesT
50.15,0.20,0.25. Each set of points follows the expected po
law. Inset: the exponent of the power law as a function of inve
temperatureb. The predicted value ofbJ/ ln2, Eq.~13!, is shown as
the dotted line.
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and theAk assigned by a least squares fit to the data.
particular interest are the ‘‘steps’’ visible in this fit. The tem
peraturesTk at which these occur are solutions oftk5t:

Tk5Jk/ ln t, ~16!

with k taking integer values up to log2L. Thus the tempera-
ture at which the system fails to equilibrate is inversely p
portional to the logarithm of the cooling timet. This goes to
zero more slowly than any power law ast goes to infinity.

V. AGING

We have also looked at the aging behavior of the mo
by examining the behavior of the two-time spin-spin co
nected correlation functionC(tw ,t) as a function of waiting
time tw . This function is defined by

C~ tw ,t !5si~ tw!si~ t !2si~ tw!si~ t !, ~17!

where the bar indicates an average over the lattice. If a
tem relaxes to equilibrium exponentially fast,C is a function
only of t2tw . In our model, however, as is typical in sys
tems with slow relaxation,C depends ontw . In Fig. 4 we
showC as a function of the ratiot/tw for a variety of values
of tw . The figure has a number of notable features. T
‘‘steps’’ in the correlation function arise because all barrie
in the model are multiples ofJ. This is true in some othe
glassy models as well, such as the Edwards-Anderson I
spin glass@2,4# with random bonds6J. However, in that
model, the height of the highest barrier, and hence the d
sity of steps per unit volume, increases as a power of the
of the system, so that for a system of moderate size, the s
in C(tw ,t) are small enough to be indistinguishable to t
eye. In our model the height of the highest barrier in t

-

er
e

FIG. 3. The internal energy per site as a function of tempera
in a series of annealing simulations using an exponential coo
schedule~dashed lines! compared to the exact solution at equilib
rium ~solid line!. Inset: the internal energy following a quench fro
T5` to a finite temperature. The points are data from Monte Ca
simulations, the solid line is the equilibrium solution, and t
dashed line is a fit of the form~15!. The steps in the fitted function
correspond to the time scalestk , Eq. ~14!. Their heights are set by
the fit parametersAk , but their positions are absolute.
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system increases only logarithmically with system size,
that the steps are still visible even for quite large lattices

Ignoring the steps in the correlation function, the figu
shows that the rate of decline of the correlation function a
function of t/tw is roughly independent oftw , although there
is no actual collapse of the curves onto one another as t
is in some other models@11#. This is precisely the type o
behavior which one would expect to see in this system, si
the energy barriers we need to cross at each succee
length scalel 52k are a constant amountJ higher than those

FIG. 4. The two-time correlation functionC(tw ,t) plotted as a
function of t/tw for tw54n with n50,1,2,3,5,7,9. Note that the
horizontal~time! axis is logarithmic.
o

a

re

e
ing

at the previous one, so that the corresponding time-sc
increase by a constant factor@see Eq.~14!#. ~By contrast, a
plot in which the time is not scaled by the factortw gives no
collapse of the correlation function, whereas in a nongla
system such a plot should collapse perfectly.! Our model is
instructive in this respect, since it makes the origins of
aging behavior particularly clear.

VI. CONCLUSIONS

To conclude, we have introduced a two-dimensional s
model with no randomness and only short-range interactio
Under single-spin-flip dynamics it displays glassy behavi
with barrier heights growing logarithmically with system
size. We have given an exact solution for both the equi
rium properties of the model and the distribution of ener
barriers. We have performed numerical simulations wh
confirm our analytic results to within the available precisio
The model seems to have no sharp glass transition, and
out of equilibrium at a temperature which decreases logar
mically as a function of the cooling time. It also display
clear aging behavior consistent with our understanding of
distribution of energy barriers.
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